热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

机器学习|分类性能度量指标:ROC曲线、AUC值、正确率、召回率

本篇博客的图源来自zhwhong,转载仅作学习使用!在分类任务中,人们总是喜欢基于错误率来衡量分类器任务的成功程度。错误率指的是在所有测试样例中错分的样例比例。实际上,这样的度量错

本篇博客的图源来自 zhwhong,转载仅作学习使用!


在分类任务中,人们总是喜欢基于错误率来衡量分类器任务的成功程度。错误率指的是在所有测试样例中错分的样例比例。实际上,这样的度量错误掩盖了样例如何被分错的事实。在机器学习中,有一个普遍适用的称为混淆矩阵(confusion matrix)的工具,它可以帮助人们更好地了解分类中的错误。

比如有这样一个在房子周围可能发现的动物类型的预测,这个预测的三类问题的混淆矩阵如下表所示:

一个三类问题的混淆矩阵

利用混淆矩阵可以充分理解分类中的错误了。如果混淆矩阵中的非对角线元素均为0,就会得到一个近乎完美的分类器。

在接下来的讨论中,将以经典的二分类问题为例,对于多分类类比推断。

二分类问题在机器学习中是一个很常见的问题,经常会用到。ROC (Receiver Operating Characteristic) 曲线和 AUC (Area Under the Curve) 值常被用来评价一个二值分类器 (binary classifier) 的优劣。之前做医学图像计算机辅助肺结节检测时,在评定模型预测结果时,就用到了ROC和AUC,这里简单介绍一下它们的特点,以及更为深入地,讨论如何作出ROC曲线图和计算AUC值。


一、医学图像识别二分类问题

针对一个二分类问题,我们将实例分成正类(positive)和负类(negative)两种。

例如:在肺结节计算机辅助识别这一问题上,一幅肺部CT图像中有肺结节被认为是阳性(positive),没有肺结节被认为是阴性(negative)。对于部分有肺结节的示意图如下:

常见肺结节示意图 from zhwhong’blog

所以在实际检测时,就会有如下四种情况:


(1) 真阳性(True Positive,TP):检测有结节,且实际有结节;正确肯定的匹配数目;

(2) 假阳性(False Positive,FP):检测有结节,但实际无结节;误报,给出的匹配是不正确的;

(3) 真阴性(True Negative,TN):检测无结节,且实际无结节;正确拒绝的非匹配数目;

(4) 假阴性(False Negative,FN):检测无结节,但实际有结节;漏报,没有正确找到的匹配的数目。


详细图解如下:

混淆矩阵

上图中涉及到很多相关概念及参数,详细请见Wiki上的定义及其混淆矩阵。

wiki混淆矩阵

这里整理肺结节识别中的几个主要参数指标如下:



  • 正确率(Precision):

\[\text { Precision }=\frac{T P}{T P+F P}
\]


  • 真阳性率(True Positive Rate,TPR),灵敏度(Sensitivity),召回率(Recall):

\[\text { Sensitivity }=\text { Recall }=T P R=\frac{T P}{T P+F N}
\]


  • 真阴性率(True Negative Rate,TNR),特异度(Specificity):

\[\text { Specificity }=T N R=\frac{T N}{F P+T N}
\]


  • 假阴性率(False Negatice Rate,FNR),漏诊率( = 1 - 灵敏度):

\[F N R=\frac{F N}{T P+F N}
\]


  • 假阳性率(False Positice Rate,FPR),误诊率( = 1 - 特异度):

\[F P R=\frac{F P}{FP + TN}
\]


  • 阳性似然比(Positive Likelihood Ratio (LR+)):

\[L R+=\frac{T P R}{F P R}=\frac{\text { Sensitivity }}{1-\text { Specificity }}
\]


  • 阴性似然比(Negative Likelihood Ratio (LR−) ):

\[L R-=\frac{F N R}{T N R}=\frac{\text {1 - Sensitivity }}{\text { Specificity }}
\]


  • Youden指数(Youden index):

\[\text { Youden index }=\text { Sensitivity }+\text { Specificity }-1=T P R-F P R
\]

二、ROC曲线

ROC曲线:接收者操作特征曲线(receiver operating characteristic curve),是反映敏感性和特异性连续变量的综合指标,roc曲线上每个点反映着对同一信号刺激的感受性。

对于分类器或者说分类算法,评价指标主要有precision,recall,F1 score等,以及这里要讨论的ROC和AUC。下图是一个ROC曲线的示例:

ROC 经典示意图



  • 横坐标:1-Specificity,伪正类率(False positive rate, FPR),预测为正但实际为负的样本占所有负例样本 的比例;

  • 纵坐标:Sensitivity,真正类率(True positive rate, TPR),预测为正且实际为正的样本占所有正例样本 的比例。

在一个二分类模型中,假设采用逻辑回归分类器,其给出针对每个实例为正类的概率,那么通过设定一个阈值如0.6,概率大于等于0.6的为正类,小于0.6的为负类。对应的就可以算出一组(FPR,TPR),在平面中得到对应坐标点。随着阈值的逐渐减小,越来越多的实例被划分为正类,但是这些正类中同样也掺杂着真正的负实例,即TPR和FPR会同时增大。阈值最大时,对应坐标点为(0,0),阈值最小时,对应坐标点(1,1)。

如下面这幅图,(a)图中实线为ROC曲线,线上每个点对应一个阈值。

ROC曲线和它相关的比率

(a) 理想情况下,TPR应该接近1,FPR应该接近0。ROC曲线上的每一个点对应于一个threshold,对于一个分类器,每个threshold下会有一个TPR和FPR。比如Threshold最大时,TP=FP=0,对应于原点;Threshold最小时,TN=FN=0,对应于右上角的点(1,1)。

(b) P和N得分不作为特征间距离d的一个函数,随着阈值theta增加,TP和FP都增加。



  • 横轴FPR:1-TNR,1-Specificity,FPR越大,预测正类中实际负类越多。

  • 纵轴TPR:Sensitivity(正类覆盖率),TPR越大,预测正类中实际正类越多。

  • 理想目标:TPR=1,FPR=0,即图中(0,1)点,故ROC曲线越靠拢(0,1)点,越偏离45度对角线越好,Sensitivity、Specificity越大效果越好。

随着阈值threshold调整,ROC坐标系里的点如何移动可以参考:

6


三、如何画ROC曲线

对于一个特定的分类器和测试数据集,显然只能得到一个分类结果,即一组FPR和TPR结果,而要得到一个曲线,我们实际上需要一系列FPR和TPR的值,这又是如何得到的呢?我们先来看一下Wikipedia上对ROC曲线的定义:


In signal detection theory, a receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot which illustrates the performance of a binary classifier system as its discrimination threshold is varied.


问题在于“as its discrimination threashold is varied”。如何理解这里的“discrimination threashold”呢?我们忽略了分类器的一个重要功能“概率输出”,即表示分类器认为某个样本具有多大的概率属于正样本(或负样本)。通过更深入地了解各个分类器的内部机理,我们总能想办法得到一种概率输出。通常来说,是将一个实数范围通过某个变换映射到(0,1)区间。

假如我们已经得到了所有样本的概率输出(属于正样本的概率),现在的问题是如何改变“discrimination threashold”?我们根据每个测试样本属于正样本的概率值从大到小排序。下图是一个示例,图中共有20个测试样本,“Class”一栏表示每个测试样本真正的标签(p表示正样本,n表示负样本),“Score”表示每个测试样本属于正样本的概率。

接下来,我们从高到低,依次将“Score”值作为阈值threshold,当测试样本属于正样本的概率大于或等于这个threshold时,我们认为它为正样本,否则为负样本。举例来说,对于图中的第4个样本,其“Score”值为0.6,那么样本1,2,3,4都被认为是正样本,因为它们的“Score”值都大于等于0.6,而其他样本则都认为是负样本。每次选取一个不同的threshold,我们就可以得到一组FPR和TPR,即ROC曲线上的一点。这样一来,我们一共得到了20组FPR和TPR的值,将它们画在ROC曲线的结果如下图:

当我们将threshold设置为1和0时,分别可以得到ROC曲线上的(0,0)和(1,1)两个点。将这些(FPR,TPR)对连接起来,就得到了ROC曲线。当threshold取值越多,ROC曲线越平滑。

其实,我们并不一定要得到每个测试样本是正样本的概率值,只要得到这个分类器对该测试样本的“评分值”即可(评分值并不一定在(0,1)区间)。评分越高,表示分类器越肯定地认为这个测试样本是正样本,而且同时使用各个评分值作为threshold。我认为将评分值转化为概率更易于理解一些。


四、AUC


AUC值的计算

AUC (Area Under Curve) 被定义为ROC曲线下的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围一般在0.5和1之间。使用AUC值作为评价标准是因为很多时候ROC曲线并不能清晰的说明哪个分类器的效果更好,而作为一个数值,对应AUC更大的分类器效果更好。

AUC的计算有两种方式,梯形法和ROC AUCH法,都是以逼近法求近似值,具体见wikipedia。


AUC意味着什么

那么AUC值的含义是什么呢?根据(Fawcett, 2006),AUC的值的含义是:


The AUC value is equivalent to the probability that a randomly chosen positive example is ranked higher than a randomly chosen negative example.


这句话有些绕,我尝试解释一下:首先AUC值是一个概率值,当你随机挑选一个正样本以及一个负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值。当然,AUC值越大,当前的分类算法越有可能将正样本排在负样本前面,即能够更好的分类。

从AUC判断分类器(预测模型)优劣的标准:



  • AUC = 1,是完美分类器,采用这个预测模型时,存在至少一个阈值能得出完美预测。绝大多数预测的场合,不存在完美分类器。

  • 0.5
  • AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。

  • AUC <0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。

三种AUC值示例:

简单说:AUC值越大的分类器,正确率越高


为什么使用ROC曲线

既然已经这么多评价标准,为什么还要使用ROC和AUC呢?因为ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化。下图是ROC曲线和Precision-Recall曲线的对比:

在上图中,(a)和(c)为ROC曲线,(b)和(d)为Precision-Recall曲线。(a)和(b)展示的是分类其在原始测试集(正负样本分布平衡)的结果,(c)和(d)是将测试集中负样本的数量增加到原来的10倍后,分类器的结果。可以明显的看出,ROC曲线基本保持原貌,而Precision-Recall曲线则变化较大。




Reference

本文学习自 zhwhong,内容仅供学习使用!



推荐阅读
  • 鄂维南:从数学角度,理解机器学习的「黑魔法」,并应用于更广泛的科学问题...
    作者|Hertz来源|科学智能AISI北京时间2022年7月8日晚上22:30,鄂维南院士在2022年的国际数学家大会上作一小时大会报告(plenarytalk)。今 ... [详细]
  • 本文由编程笔记#小编为大家整理,主要介绍了logistic回归(线性和非线性)相关的知识,包括线性logistic回归的代码和数据集的分布情况。希望对你有一定的参考价值。 ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • 本文介绍了南邮ctf-web的writeup,包括签到题和md5 collision。在CTF比赛和渗透测试中,可以通过查看源代码、代码注释、页面隐藏元素、超链接和HTTP响应头部来寻找flag或提示信息。利用PHP弱类型,可以发现md5('QNKCDZO')='0e830400451993494058024219903391'和md5('240610708')='0e462097431906509019562988736854'。 ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • 本文介绍了绕过WAF的XSS检测机制的方法,包括确定payload结构、测试和混淆。同时提出了一种构建XSS payload的方法,该payload与安全机制使用的正则表达式不匹配。通过清理用户输入、转义输出、使用文档对象模型(DOM)接收器和源、实施适当的跨域资源共享(CORS)策略和其他安全策略,可以有效阻止XSS漏洞。但是,WAF或自定义过滤器仍然被广泛使用来增加安全性。本文的方法可以绕过这种安全机制,构建与正则表达式不匹配的XSS payload。 ... [详细]
  • Android自定义控件绘图篇之Paint函数大汇总
    本文介绍了Android自定义控件绘图篇中的Paint函数大汇总,包括重置画笔、设置颜色、设置透明度、设置样式、设置宽度、设置抗锯齿等功能。通过学习这些函数,可以更好地掌握Paint的用法。 ... [详细]
  • OpenMap教程4 – 图层概述
    本文介绍了OpenMap教程4中关于地图图层的内容,包括将ShapeLayer添加到MapBean中的方法,OpenMap支持的图层类型以及使用BufferedLayer创建图像的MapBean。此外,还介绍了Layer背景标志的作用和OMGraphicHandlerLayer的基础层类。 ... [详细]
  • 花瓣|目标值_Compose 动画边学边做夏日彩虹
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了Compose动画边学边做-夏日彩虹相关的知识,希望对你有一定的参考价值。引言Comp ... [详细]
  • 支持向量机训练集多少个_25道题检测你对支持向量机算法的掌握程度
    介绍在我们学习机器算法的时候,可以将机器学习算法视为包含刀枪剑戟斧钺钩叉的一个军械库。你可以使用各种各样的兵器,但你要明白这些兵器是需要在合适的时间合理 ... [详细]
  • 在真实开发中,因为需求是不断变化的,说不定什么时候就需要往模型里添加新的字段,添加新的模型,甚至是大规模的重构; ... [详细]
  • 人工智能推理能力与假设检验
    最近Google的Deepmind开始研究如何让AI做数学题。这个问题的提出非常有启发,逻辑推理,发现新知识的能力应该是强人工智能出现自我意识之前最需要发展的能力。深度学习目前可以 ... [详细]
  • 马尔可夫决策过程Markov Decision Process,MDPKintoki
    Originalurl:http:www.tuicool.comarticlesb6BjAva1.马尔可夫模型的几类子模型我想大家一定听说过马尔科夫链(MarkovChain)& ... [详细]
  • 机器学习——KMeans算法
    相似度或距离假设有$m$个样本,每个样本由$n$个属性的特征向量组成,样本合集可以用矩阵$X$表示$X[x_{ij}]_{mn}\begin{bmatrix}x_{11}& ... [详细]
  • 开源真香 离线识别率高 Python 人脸识别系统
    本文主要介绍关于python,人工智能,计算机视觉的知识点,对【开源真香离线识别率高Python人脸识别系统】和【】有兴趣的朋友可以看下由【000X000】投稿的技术文章,希望该技术和经验能帮到 ... [详细]
author-avatar
手机用户2602904231
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有